Chromatin determinants of the inner-centromere rely on replication factors with functions that impart cohesion
نویسندگان
چکیده
Replication fork-associated factors promote genome integrity and protect against cancer. Mutations in the DDX11 helicase and the ESCO2 acetyltransferase also cause related developmental disorders classified as cohesinopathies. Here we generated vertebrate model cell lines of these disorders and cohesinopathies-related genes. We found that vertebrate DDX11 and Tim-Tipin are individually needed to compensate for ESCO2 loss in chromosome segregation, with DDX11 also playing complementary roles with ESCO2 in centromeric cohesion. Our study reveals that overt centromeric cohesion loss does not necessarily precede chromosome missegregation, while both these problems correlate with, and possibly originate from, inner-centromere defects involving reduced phosphorylation of histone H3T3 (pH3T3) in the region. Interestingly, the mitotic pH3T3 mark was defective in all analyzed replication-related mutants with functions in cohesion. The results pinpoint mitotic pH3T3 as a postreplicative chromatin mark that is sensitive to replication stress and conducts with different kinetics to robust centromeric cohesion and correct chromosome segregation.
منابع مشابه
Centromere domain organization and histone modifications.
Centromere function requires the proper coordination of several subfunctions, such as kinetochore assembly, sister chromatid cohesion, binding of kinetochore microtubules, orientation of sister kinetochores to opposite spindle poles, and their movement towards the spindle poles. Centromere structure appears to be organized in different, separable domains in order to accomplish these functions. ...
متن کاملCENP-A, a conserved centromeric histone within kinetochore chromatin
Studies in several organisms have shown that eukaryotic centromere regions contain proteins involved in chromosome inheritance functions such as centromere structure, heterochromatin assembly and sister chromatid cohesion. Mutation, inhibition, knockout and reciprocal epistasis experiments have revealed functions for many centromere region proteins and their order in the centromere assembly pat...
متن کاملIdentification of Cohesin Association Sites at Centromeres and along Chromosome Arms
A multisubunit cohesin complex holds sister chromatids together after DNA replication. Using chromatin immunoprecipitation, we detected cohesin association with centromeres and with discrete sites along chromosome arms from S phase until metaphase in S. cerevisiae. Short DNA sequences (130-280 bp) are sufficient to confer cohesin association. Cohesin association with a centromere depends on Mif...
متن کاملPds5B is required for cohesion establishment and Aurora B accumulation at centromeres.
Cohesin mediates sister chromatid cohesion and contributes to the organization of interphase chromatin through DNA looping. In vertebrate somatic cells, cohesin consists of Smc1, Smc3, Rad21, and either SA1 or SA2. Three additional factors Pds5, Wapl, and Sororin bind to cohesin and modulate its dynamic association with chromatin. There are two Pds5 proteins in vertebrates, Pds5A and Pds5B, but...
متن کاملDiverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast.
Conserved chromosomal HP1 proteins capable of binding to histone H3 methylated at lysine 9 are believed to provide a dynamic platform for the recruitment and/or spreading of various regulatory proteins involved in diverse chromosomal processes. The fission yeast Schizosaccharomyces pombe HP1 family members Chp2 and Swi6 are important for heterochromatin assembly and transcriptional silencing, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016